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Conformal field theory (CFT) is a powerful framework for elucidating universal properties and de-
scribing critical phenomena in various systems, ranging from statistical mechanics to quantum field
theory. One hint of conformal symmetry is scale invariance, which is typically observed at critical fixed
points of renormalization group flows for which correlation lengths are infinite and there is no length
scale. While conformal symmetry always entails scale invariance, the converse has only been shown to
be true under certain assumptions, making proofs of conformal invariance non-trivial for some theories.
In this work, we provide a brief overview of CFT in d → 3 dimensions, and go over essential ideas
from quantum field theory (QFT) and the renormalization group. These elements are then applied to
the study of conformal invariance in the long-range Ising model (LRI). This model can be viewed as
a non-local version of the usual Ising model – referred to as the short-range Ising model (SRI) here
– where nearest-neighbor interactions are replaced by interactions which go like 1/rd+ω. Just like the
SRI, the LRI displays a second-order phase transition at a critical temperature. However, the critical
theory depends on a parameter ω. For ω > ω→ = 2 ↑ εSRI, using the usual ε critical exponent from the
Ising model, the critical theory reduces to the SRI, and for ω < d/2, the critical theory is Gaussian.
The intermediate case, d/2 < ω < ω→, is a non-trivial and non-Gaussian theory. Using the ϑ-expansion,
we study the theory close to ω = d/2, in the so-called LRI fixed point, which can be described using
a generalized free field perturbed by a marginally relevant ϖ4 interaction. We then calculate certain
correlation functions to test conformality, and justify conformal invariance to all orders in perturbation
theory. This study is essential in paving the way for the application of conformal bootstrap methods,
which yield non-perturbative approaches to constraining CFT data and e!ectively solving theories.
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1 Introduction

One of the biggest unresolved problems in theoretical physics is the quantization of gravity. Indeed, fitting
gravity into a quantum field-theoretic framework has proven challenging from a conceptual standpoint, not
to mention the sophistication of the formalism and the lack of experimental evidence. For some, the main
culprit behind the di!culty of the problem is quantum mechanics and QFT [1]. Indeed, even the most
basic situations in QFT involve complex functional integrals, canceling infinities through a process called
renormalization, and interpreting asymptotic series whose convergence is far from guaranteed. Moreover,
most computations in QFT are carried out via perturbation theory, assuming weakly-coupled interactions.
However, some phenomena are fundamentally non-perturbative and one must resort to other techniques to
study them (typically regarding the strong force and confinement). Therefore, there is some consensus that,
in order to develop a theory of quantum gravity, further understanding – particularly non-perturbative – of
QFT will be necessary. Incidentally, putting aside gravity, furthering such an understanding has intrinsic
worth, since QFT is often considered the most fundamental theory of nature.

A quantum field can be constructed using unitary representations of the Poincaré group (which have
to be infinite-dimensional since it is a non-compact group). However, one might want to add additional
symmetries to further constrain the theory. A group of symmetries which has proven to be particularly
useful is the conformal group, whose study yields conformal field theory (CFT). A CFT is a theory which is
invariant under the conformal group i.e. the group containing any transformation which ”preserves angles”.
This property is summarized by a constraint on how the metric changes under such a transformation x ↓↔ x̃:

gµω(x) ↔ g̃µω(x̃) =
ϑxε

ϑx̃µ

ϑxϑ

ϑx̃ω
gεϑ(x) = ”(x)gµω(x) (1.1)

where ” is a function called the scale factor. Notice that this is consistent with the geometric picture of
angles being preserved. Indeed for two vectors v,w, the following ratio is clearly preserved under a conformal
transformation (simply put, the ” factors cancel out):

v ·w

↗v↗↗w↗
=

gµωvµwω
↘
gµωvµvω

↘
gµωwµwω

(1.2)

In particular, the case ” = 1 corresponds to the Poincaré group, which is a subgroup of the conformal group
in flat spacetime (we won’t be considering curvature here). Hence, representations of the conformal group
will yield a subclass of QFTs.

It turns out that many theories exhibit conformal symmetry. Examples of these include sourceless quan-
tum electrodynamics (QED), massless Dirac fields or even Yang-Mills theory in d = 4 dimensions (a gauge
theory based on SU(N) useful for understanding the standard model). Moreover, one knows from statistical
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mechanics that, close to a critical fixed point of a renormalization group (RG) flow, the correlation length
of given degrees of freedom is infinite. This implies the absence of a length scale, and hence scale invariance
(invariance under x ↓↔ ϖx). Scale invariance has been shown to imply conformal symmetry for d = 2, and
this is often the case for d > 2. Thus, a critical fixed point of an RG flow can typically be a CFT. Since the
study of fixed points is at the heart of the renormalization group and can yield critical exponents for entire
universality classes, CFT can prove very useful to the study of a given QFT even when it isn’t conformally
invariant, since once can study it close to a critical point. Furthermore, through the so-called conformal

bootstrap program, CFT allows one to obtain numerical constraints on the fundamental ”data” of a theory,
thus allowing one to get closer to solving it non-perturbatively, which is one of the main goals in current
QFT research.

In this work, we start by reviewing the basic elements of CFT and QFT needed to understanding recent
work conducted on the long-range Ising model (LRI for short). The LRI is a non-local extension of the
regular Ising model, in that it includes infinite-range interactions going like an inverse power of distance
between spins. It turns out that at two special ”crossover” points, the LRI can be shown to be conformally
invariant. As an instructive application of the first sections on CFT and QFT, we review some of the
arguments supporting conformal invariance in one of these points, with a particular emphasis on a paper by
Paulos et al. [2].

2 Introduction to Conformal Field Theory

2.1 The conformal group in d → 3

In this section, we derive all of the infinitesimal conformal transformations for d → 3 in a flat spacetime of
signature (p, q), following [3, 4]. Consider an infinitesimal transformation defined by x̃µ = xµ+ ϱµ. Plugging
this into equation (1.1) yields:

(
ςεµ ≃ ϑµϱ

ε
) (

ςϑω ≃ ϑωϱ
ϑ
)
φεϑ = ”φµω (2.1)

To first order in ϱ:

ϑµϱω + ϑωϱµ = ↼φµω (2.2)

where ↼ = 1≃ ”. Taking the trace of the above equation yields

↼ =
2

d
ϑ · ϱ (2.3)

Thus ↼ can be expressed using the divergence of the infinitesimal transformation, which we denote ϑ · ϱ :=
ϑϖϱϖ. Therefore, the constraint on ϱ can be written as

ϑµϱω + ϑωϱµ =
2

d
(ϑ · ϱ) φµω (2.4)

Acting with ϑϖ on the above equation and taking circular permutations of (µ, ↽, ⇀) leads to

ϑϖϑωϱµ =
1

d
(φµωϑϖ + φµϖϑω ≃ φωϖϑµ) (ϑ · ϱ) (2.5)

Next, we apply ϑµ:

(d≃ 2)ϑϖϑω (ϑ · ϱ) = ≃φωϖ↭ (ϑ · ϱ) (2.6)

Taking the trace of this equation gives (d≃ 1)↭ (ϑ · ϱ) = 0, and plugging this back into the above equation
yields the following condition on infinitesimal conformal transformations:

(d≃ 1)(d≃ 2)ϑϖϑω (ϑ · ϱ) = 0 (2.7)

Here, one needs to pay attention to the value of d. For d = 1, this doesn’t yield any additional information.
In fact, our definition of a conformal transformation also no longer yields additional information. It turns out
that one-dimensional CFT can be defined via conformal quantum mechanics, which we won’t discuss here.
For d = 2, this doesn’t yield a useful constraint either. However, using results from complex analysis, one
can deduce that any analytical transformation (holomorphic function) will be conformal in two dimensions.
This gives rise to an infinite family of generators, and leads to Virasoro algebras, which we again do not
broach upon in this work for the sake of brevity (although d = 2 is a case where CFT is in fact extremely
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useful, scale invariance implying conformal invariance among other things). Hence, focusing on d → 3 gives
the following condition:

ϑϖϑω (ϑ · ϱ) = 0 (2.8)

One deduces from the above relation that ϱ can be at most quadratic in x, hence the following ansatz:

ϱµ = aµ + bµωx
ω + cµωϖx

ωxϖ (2.9)

where each coe!cient is of order o(1), and in particular cµωϖ is symmetric in (↽, ⇀). The term aµ is clearly
related to translations. Applying the constraint (2.4) to the second term implies that bµω has a symmetric
part proportional to the metric. Hence, denoting its antisymmetric part mµω , we get bµω = ⇁φµω + mµω .
The symmetric part corresponds to a dilatation, while the antisymmetric part corresponds to a Lorentz
transformation. Finally, the constraint applied to the quadratic term gives rise to the so-called ”special
conformal transformation” (SCT):

x̃µ = xµ + 2(x · b)xµ
≃ x2bµ (2.10)

where bµ = cωωµ/d. We’ve classified all of the infinitesimal transformations, which give rise to finite trans-
formations through integration. Let’s derive the finite SCT as this is useful for deriving two results in this
work (see section 2.4 and appendix B.2). Consider a scale transformation with b = tb0. The above equation
holds when t is small, and this yields a di#erential equation:

ẋ = 2(x · b0)x≃ x2b0 (2.11)

where x and b0 are vector quantities. Defining y = x/x2, one can easily show that in fact ẏ = ≃b0, e#ectively
solving the equation. Hence, for a finite SCT parameter b, one has

x̃µ =
xµ

≃ x2bµ

1≃ 2(b · x) + b2x2
(2.12)

Incidentally, this can be shown to be the composition of an inversion of x, followed by a translation by b,
followed by another inversion, where an inversion is here defined as xµ

↓↔ xµ/|x|2.

2.2 The conformal algebra

It is straightforward to determine the generators of translations, Lorentz transformations, dilatations and
SCTs respectively:






Pµ = ≃iϑµ
Lµω = i (xµϑω ≃ xωϑµ)

D = ≃ixµϑµ
Kµ = ≃i

(
2xµxωϑω ≃ x2ϑµ

)
(2.13)

As an example, let’s detail the derivation of Kµ. By definition (see equation (2.10)), The Killing vector
ξµ associated with a SCT is given by:

b · ξµ = 2xµx
ωbω ≃ x2bµ (2.14)

Using ideas from di#erential geometry, one can take a natural basis {ϑµ} such that b = bµϑµ.

ξµ = 2xµx
ωϑω ≃ x2ϑµ (2.15)

As a convention, infinitesimal transformations generated by an operator T are written as 1≃iϱT when ϱ ↔ 0.
Hence the following generator of SCTs:

Kµ = ≃i
(
2xµx

ωϑω ≃ x2ϑµ
)

(2.16)

Furthermore, these generators form a Lie algebra, which is called the conformal algebra. It is characterized
by the following commutation relations, the missing commutators being zero:
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




[D,Pµ] = iPµ

[D,Kµ] = ≃iKµ

[Kµ, Pω ] = 2i(φµωD ≃ Lµω)

[Kϖ, Lµω ] = i(φϖµKω ≃ φϖωKµ)

[Pϖ, Lµω ] = i(φϖµPω ≃ φϖωPµ)

[Lµω , Lϖϱ] = i(φωϖLµϱ + φµϱLωϖ ≃ φµϖLωϱ ≃ φωϱLµϖ)

(2.17)

In particular, it is worth noting that except for Lorentz transformations, all transformations of the
same nature commute with one another. Moreover, the first two commutation relations are conceptually
important. Indeed, they show that Pµ and Kµ act like creation and annihilation operators on eigenspaces
of D, and this will be useful in the section 2.3. Again, let’s derive one of these relations as an example.

[Kµ, Pω ] = 2i(φµωD ≃ Lµω) = [≃i
(
2xµx

ϖϑϖ ≃ x2ϑµ
)
,≃iϑω ]

= [ϑω ,
(
2xµx

ϖϑϖ ≃ x2ϑµ
)
]

= 2[ϑω , xµx
ϖϑϖ]≃ [ϑω , x

2ϑµ]

= 2[ϑω , xµx
ϖ]ϑϖ ≃ [ϑω , x

2]ϑµ

= 2φµε (ςεω x
ϖ + xεςϖω) ϑϖ ≃ 2xωϑµ

= 2φµωx
ϖϑϖ + 2(xµϑω ≃ xωϑµ)

= 2i (φµωD ≃ Lµω)

(2.18)

In d → 3 dimensions, there is one dilatation, d translations, d SCTs and d(d≃ 1)/2 rotations. These sum
up to (d + 1)(d + 2)/2 generators, which incidentally coincides with the number of generators of so(d + 2).
In fact, one can show that the conformal algebra coincides with so(p + 1, q + 1) for d = p + q. This can be
done by defining the following family of generators:






Jµ,ω = Lµω

J→1,µ = 1
2 (Pµ ≃Kµ)

J0,µ = 1
2 (Pµ +Kµ)

J→1,0 = D

(2.19)

Using the previous commutation relations leads to the following commutation relations, which summarize
all there is to know about the conformal algebra:

[Jmn, Jpq] = i (φmqJnp + φnpJmq ≃ φmpJnq ≃ φnqJmp) (2.20)

where the metric used is of signature (p+1, q+1). Therefore, the conformal algebra is so(p+1, q+1), and we
shall sometimes use the shorthand SO(p+1, q+1) for the conformal group (although strictly speaking having
the same Lie algebra as another group doesn’t entail equality with that group, unless it is simply-connected).

2.3 Representations of the conformal group

Fields, which become operators in canonical quantization, transform in irreducible unitary representations
of the Poincaré group, which are infinite-dimensional since it’s non-compact. For a scalar quantum field ω
(we won’t be dealing with fields endowed with spin in the LRI) and ” ⇐ SO(p, q), we have the following
action:

U(”)†ω̂(x)U(”) = ω̂(”→1x) (2.21)

Wherever QFT is involved in this work, we’ll be using the path integral formalism, which is equivalent to
canonical quantization but enables one to use classical field configurations, the quantum fluctuations being
encoded into a Boltzmann-like probability distribution. Hence, we’ll be studying classical fields from here
on out.

Since we’re working with irreducible representations of the Lorentz group and we’ve previously seen that
[D,Lµω ] = 0, Schur’s lemma implies the existence of a scalar $, called the scaling dimension of the field,
such that D := ≃i$ Id. The value of [D,Kµ] then implies that Kµω = 0 i.e. the field is annihilated by
the generator of SCTs. Fields, or operators which satisfy this property are called primary operators. If an
operator is obtained from another by acting with generators of the conformal group, it is called a descendant
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operator.

Next, we derive the action of this algebra on ω(x), given its behavior at x = 0 i.e. Lµω ,ω(0) = Sµωω(0)
(this conceptually amounts to first considering a ”little group” preserving the origin [5]). Using the translation
operator, the Baker-Hausdor# lemma, and the conformal commutation relations one can easily check that
(see [6–8] for the equivalent statement in the operator formalism):

Lµωω(x) = Lµωe
→ixωPωω(0) = e→ixωPω

(
eix

ωPωLµωe
→ixωPω

)
ω(0)

= e→ixωPω (Lµω ≃ xµPω + xωPµ)ω(0)

= (Sµω ≃ xµPω + xωPµ)ω(x)

(2.22)

This yields the action of Lorentz transformations at x ⇒= 0. Similarly, one can derive the following action of
dilatations and SCTs on ω(x) (that of Pµ is clear since it simply generates a translation):

{
Dω(x) = (xµPµ ≃ i$)ω(x)

Kµψ(x) =
(
2xµxςPς ≃ |x|2Pµ ≃ 2i$xµ ≃ 2xςSςµ

)
ω(x)

(2.23)

For a spinless field, which is the case here, we in fact have Sµω = 0 and the behavior of the field under
the conformal group is essentially characterized by its scaling dimension $. From the above, one can derive
the action of a finite conformal transformation on a scalar field ω:

ω(x) ↔ ω↑(x↑) =

∣∣∣∣
ϑx̃

ϑx

∣∣∣∣
→!/d

ω(x) (2.24)

A field satisfying this transformation property is called a quasi-primary field. Indeed, all primaries satisfy
this property, while quasi-primaries are not primary a priori. Being primary or quasi-primary is a heavy
constraint, which can be used to drastically simplify the form of their correlation functions, while one can
obtain information on descendants using the action of conformal generators on primaries.

2.4 Constraints on correlation functions

It turns out that conformal symmetry heavily constrains the correlation functions of a given theory. Let’s
consider a theory with a given action S[%] depending on a field configuration %. The path integral formulation
allows one to write correlation functions in the following way:

⇑O1(x1) . . .On(xn)⇓ =
1

Z

ˆ
D[%]O1(x1) . . .On(xn)e

→S[”] (2.25)

where Z is a normalization factor, called the partition function by analogy with statistical mechanics. This
combined with the transformation rule for primary operators entails the following transformation rule for
correlation functions:

⇑O1(x1) . . .On(xn)⇓ =

∣∣∣∣
ϑx̃

ϑx

∣∣∣∣
!1/d

x=x1

. . .

∣∣∣∣
ϑx̃

ϑx

∣∣∣∣
!n/d

x=xn

⇑O1(x
↑

1) . . .On(x
↑

n)⇓ (2.26)

In particular, let’s consider this relation for a scale transformation x ↓↔ ϖx and a two-point correlation
function:

⇑O1(x1)O2(x2)⇓ = ϖ!1+!2⇑O1(ϖx1)O2(ϖx2)⇓ (2.27)

Poincaré invariance constrains the two-point correlation function to depend only on the distance between
two points:

⇑O1(x1)O2(x2)⇓ = f (|x1 ≃ x2|) (2.28)

The first constraint imposes the following functional equation on f :

f(x) = ϖ!1+!2f(ϖx) (2.29)

Hence:

⇑O1(x1)O2(x2)⇓ =
f(1)

|x1 ≃ x2|
!1+!2

(2.30)
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where f(1) is a constant depending on the two operators. It turns out that further restrictions can be derived
using other conformal transformations. Indeed, invariance under finite SCTs, followed by a normalization
condition which we do not explain here yields the following form [9]:

⇑O1(x1)O2(x2)⇓ =
ςij

|x1 ≃ x2|
2!ij

(2.31)

It is worth noting that this is exactly the dependence of the Ising model’s two-point correlation function
at its critical point, and the scaling dimension of the Ising spin field is directly related to the critical exponent
φ. As mentioned previously, at the critical point, the theory becomes scale invariant, which is a hallmark of
conformal invariance.

Similarly, one can show that conformal invariance leads to the following form for three-point correlation
functions:

⇑O1(x1)O2(x2)O3(x3)⇓ =
ϖ123

|x1 ≃ x2|
h123

|x1 ≃ x3|
h131

|x2 ≃ x3|
h231

(2.32)

where hijk = $i +$j ≃$k. The values of $i and ϖijk, referred to as CFT data, are all that is needed in
a CFT to compute any local observable (typically higher-order correlation functions). This follows from the
operator product expansion, or OPE for short.

2.5 The Operator Product Expansion in CFT

Simply put, an OPE tells us that we can expand the product of two local operators in terms of local operators.
Indeed, let Oi(x),Oj(y) be two local operators. Then there exists a family of functions fijk (called structure
constants) defined on some open set U , such that for z ⇐ U :

Oi(x)Oj(y) =
∑

k

fijk(z)Ok(z) (2.33)

where the Ok comprise all of the operators of the theory. A typical situation where OPEs arise is when two
local operators are inserted close together in a correlation function, and this is the situation which will arise
in the next sections. In CFT, such an OPE takes the following form [10]:

Oi(x)Oj(y) =
x→y

∑

k

ϖijk

|x≃ y|!i+!j→!k
Ok(x≃ y) (2.34)

To determine the ϖ coe!cients, one can look at the following three-point function and insert the OPE
ansatz when x ↔ 0:

⇑Oi(x)Oj(0)Ok(y)⇓ =
∑

l

ϖijl

|x|!i+!j→!l
⇑Ol(x)Ok(y)⇓ (2.35)

The operators appearing in the OPE can be primaries or descendants. In the latter case, this will amount
to a conformal symmetry generator (typically a di#erential operator) applied to a primary, and hence the 2-
point functions in the OPE can always be related to two-point functions of primaries. Recall that from CFT
the two-point function of two primaries vanishes unless the two operators coincide. Hence, the three-point
function simplifies drastically:

⇑Oi(x)Oj(0)Ok(y)⇓ =
ϖijk

|x|!i+!j→!k
D⇑Ok(x)Ok(y)⇓ (2.36)

where D is some di#erential operator. Let’s suppose for the sake of simplicity that such di#erential operators
don’t appear. Using the expression of a (normalized) two-point function in CFT one then has for x ↔ 0:

⇑Oi(x)Oj(0)Ok(y)⇓ =
ϖijk

|x|!i+!j→!k |y|2!k
(2.37)

One can then check that this is consistent with the expression of three-point functions in a CFT (the con-
dition x ↔ 0 is crucial for this to be true), and hence one can relate the OPE coe!cients to the CFT data.
The OPE allows one to reduce the order of correlation functions to solve for, and hence the CFT data is
enough to compute correlation functions of local observables to arbitrarily high order, as previously alluded
to.
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It is worth noting that OPEs are at the basis of conformal bootstrap methods [8, 11]. Consider a
four-point correlation function ⇑O1O2O3O4⇓. One can compute the OPE of O1O2 and O3O4, or O1O4 and
O2O3. The two expansions must coincide on the intersection of the associated sets of convergence; this yields
a crossing relation. Imposing crossing relations on all four-point functions would significantly constrain the
possible values of CFT data, although in practice one can only impose them on a smaller subset of correlation
functions. The conformal bootstrap is one of the main fields of research related to CFT, but it lies beyond
the scope of this work.

2.6 Stress tensors and a criterion for conformal invariance

As with any symmetry, the associated currents are important objects in a given theory. Among these
currents, the stress tensor is an object of note in CFT. The canonical stress tensor of a field theory can be
derived using spacetime translation symmetry. Suppose a scalar theory is described by the following action:

S =

ˆ
ddxL (ω, ϑµω) (2.38)

Let’s also suppose this action is invariant under the infinitesimal transformation x ↓↔ x + ϱ, ω(x) ↓↔

ω(x) ≃ ϱµϑµω(x). Taking into account the Euler-Lagrange equations yields the following variation of the
action:

ςS =

ˆ
ddxςL = ϱµ

ˆ
ddx

(
≃ϑω

(
ϑL

ϑ (ϑωω)

)
ϑµω≃

ϑL

ϑ (ϑωω)
ϑωϑµω+ ϑµL

)
(2.39)

This is valid for all ϱ, hence ϑµTµω = 0 with

Tµω =
ϑL

ϑ (ϑµω)
ϑωω≃ φµωL (2.40)

This is often referred to as the canonical energy-momentum, or stress tensor. This tensor is not sym-
metric a priori. Nevertheless, it can be made symmetric by adding a divergence of a rank-3 tensor to the
Lagrangian density (this yields the so-called Belinfante tensor if we use the current associated with rota-
tional/Lorentz invariance, see [3] for example). Hence one usually assumes it is symmetric to begin with.

There is another way to derive and define the stress tensor, which renders it manifestly symmetric and
yields a powerful criterion for conformal invariance. To motivate this, suppose a theory has a symmetric
stress tensor. Then the variation of its action under x ↓↔ x+ ϱ(x) to first order in ϱ is given by

ςS = ≃

ˆ
ddxϱωϑµT

µω

=

ˆ
ddxTµωϑµϱ

ω

=
1

2

ˆ
ddxTµω (ϑµϱω + ϑωϱµ)

(2.41)

This expression can be rewritten using the variation of the metric induced by the change of coordinates.
Indeed, to first order in ϱ, g↑µω = gµω ≃ ϑµϱω ≃ ϑωϱµ = gµω + ςgµω . Hence

ςS = ≃
1

2

ˆ
ddxTµωςgµω (2.42)

from which we derive the alternate definition of the stress tensor, using a functional derivative of the action
with respect to the metric:

Tµω = ≃2
ςS

ςgµω
(2.43)

It’s worth noting that this definition coincides with the one from general relativity (in flat space), if one
takes S to be the matter contribution to the Einstein-Hilbert action. Let’s use the expression of ςgµω in the
case of conformal transformations. Indeed, one has ςgµω = ↼φµω . Plugging this into equation (2.42):

ςS ⇔

ˆ
ddx↼Tµ

µ (2.44)

We arrive at a very useful statement: a theory with a traceless stress tensor is conformal (this yields a
fast check of conformal invariance for sourceless electrodynamics for example). This is very powerful, in that

8



a calculation of the trace of an often relatively accessible tensor is much simpler than checking for conformal
invariance under each family of conformal transformations. However, not all theories have stress tensors: the
long-range Ising model, whose study we turn to in the last section, does not have one. Justifying conformal
invariance in the LRI fixed point will prove non-trivial, and will require essential ingredients from QFT,
which we turn to shortly.

2.7 Ward identities

To conclude this section on CFT, we derive another way of expressing conformal invariance following [3],
which will yield the criterion we’ll use to prove conformal invariance in the LRI fixed point. Consider the
transformation of a field ω under the infinitesimal action of a generator Ga:

ω↑(x) = (1≃ i▷aGa)ω(x) (2.45)

In the path integral formalism, the n-point correlation function of ω, which we denote ⇑X⇓, can be written
as

⇑X⇓ =
1

Z

ˆ
D%Xe→S[”] (2.46)

If we change the functional integration variable according to equation (2.45) (the detailed derivations can
be found in [3]):

⇑X⇓ =
1

Z

ˆ
D%↑(X + ςX)e→S[”]+

´
dxφµj

µ
a↼a(x) (2.47)

where we use the current jµa associated to the transformation in equation (2.45). Expanding this equation
to first order in ▷a:

⇑ςX⇓ =

ˆ
dxϑµ⇑j

µ
a (x)X⇓▷a(x) (2.48)

Next, the variation in X can be expanded explicitly:

ςX = ≃i

ˆ
dx▷a(x)

n∑

i=1

{ω(x1) . . . Gaω(xi) . . .ω(xn)} ς(x≃ xi) (2.49)

Combining the last two equations above (which hold for arbitrary small ▷a), we get the local expression of
the Ward identity for the current jµa :

ϑµ⇑j
µ
aω(x1) . . .ω(xn)⇓ = ≃i

n∑

i=1

ς(x≃ xi)⇑ω(x1) . . . Gaω(xi) . . .ω(xn)⇓ (2.50)

This equation provides a check that jµa is a conserved current, since correlation functions e#ectively
comprise all of the observables of the theory. In the case of CFT, the currents are the following (derivations
follow the same line of reasoning as in the case of translations and the stress tensor, and again we can modify
them to simplify their expressions by adding total derivatives to the action):






jµD = Tµωxω

jµωK = Tµϖ
(
2xϖxω

≃ ςµϖx
2
)

jµωϖL = Tµωxϖ
≃ Tµϖxω

(2.51)

Furthermore, the LHS vanishes in equation (2.50) if we integrate over a large enough volume (using
the divergence theorem and supposing cancelation on the boundary, or even requiring that the vacuum be
conformally invariant in operator formalism [8]) and we are left with

n∑

i=1

⇑ω(x1) . . . Gaω(xi) . . .ω(xn)⇓ = 0 (2.52)

This is the global Ward identity, which signals conservation of charge, rather than of current (the local
conservation law implies the global one, not the other way around). We shall see that the LRI does not
have a stress tensor, and hence we’ll adopt a weaker definition: a theory is taken to be conformally invariant
when the global conformal Ward identities hold: this will be essential in section 4.6. However, we first must
turn to QFT to develop the necessary tools for explicitly calculating correlation functions.
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3 Quantum Field Theory Essentials

3.1 Feynman rules

From here on out, we exclusively work in d-dimensional Euclidean space endowed with a metric ςij . As in
quantum mechanics, computing expectation values of observables – which are represented by operators –
is an essential part of QFT. The main operators in QFT are field operators, and as such solving a theory
essentially means being able to compute any correlation function of the form ⇑ω1(x1) . . .ωn(xn)⇓ for a given
field ω. Using the (Euclidean) path integral formulation, such a correlation function can be written as

⇑ω1(x1) . . .ωn(xn)⇓ =
1

Z0

ˆ
D%ω1(x1) . . .ωn(xn)e

→S[”] (3.1)

where % is a shorthand for all fields ωi of the theory. This expression is extremely hard to compute exactly
in the general case. Incidentally, it involves a measure over the space of all fields, which isn’t well defined in
the general case (a first approach might be to start with a measure on the lattice and take the continuum
limit, but then one has to rigorously prove convergence). The standard way of computing such an expression
is perturbation theory, treating the interaction part’s coupling as small and using a diagrammatic expansion
– known as Feynman diagrams – to compute successive orders of the expansion.

Suppose the action is written as a free part S0 perturbed by a ω4 interaction (this is the case we will
typically consider when studying the LRI). Generally, a free action shall be written as

S0 =
1

2

ˆ
ddxddyω(x)D(x, y)ω(y) (3.2)

where D(x, y) is some functional operator (for the usual free field, or Klein-Gordon theory, one can take
D(x, y) = ς(x ≃ y)↭x). The only case where exactly computing correlation functions of a field theory is
feasible is that of Gaussian theories (see [12] for a discussion on Gaussian integrals in QFT). This is the
case of the theory whose action is given by (3.2) above, since D can be viewed as the inverse of a functional
equivalent of the covariance matrix, and thus S0 can be interpreted as the exponent in the probability density
of a centered normal distribution.

In order to calculate n-point correlation functions of the free theory, we make use of Wick’s theorem. It
stems from the fact that a two-point correlation function is given by the propagator G(x≃ y) := D→1(x, y),
and states that for larger n, n-point correlation functions can be computed using sums and products of
propagators (see appendix A for justification):

G(n)(x1, . . . , xn) =
∑

all pairings

G(xi1 ≃ xi2) . . . G(xin↑1 ≃ xin) (3.3)

Incidentally, there are n!/(2n/2(n/2)!) such pairings, which is a number which blows up at large n. Wick’s
theorem can also be used for interacting theories treated perturbatively in ϖ. Indeed, supposing we perturb
the Gaussian theory with a ω4 term:

⇑ω(x1) . . .ω(xn)⇓ =
⇑ω(x1) . . .ω(xn)e→

ε
4!

´
ddx↽4

⇓0

⇑e→
ε
4!

´
ddx↽4

⇓0

=

∑
↓

k=0
(→1)kςk

4!kk!

´
ddy1 . . . ddyk⇑ω(x1) . . .ω(xn)ω4(y1) . . .ω4(yk)⇓0

∑
↓

k=0
(→1)kςk

4!kk!

´
ddy1 . . . ddyk⇑ω4(y1) . . .ω4(yk)⇓0

(3.4)

Note that we’ve swapped integral and summation signs without any rigorous justification. In general,
these are not convergent series, but rather asymptotic series i.e. despite initially being convergent, they can
diverge eventually. Wick’s theorem then applies to the correlators with respect to the free theory. Each term
in this expansion can be represented by a so-called Feynman diagram. Using notations from the expansion
above, a given diagram has k internal vertices – signaling integration over position – and n external vertices,
while propagators are represented by solid lines connecting vertices. In particular, for ω4 theory, internal
vertices have four ”legs”. These guidelines are referred to as position-space Feynman rules, and we will
mainly make use of these in this work.

However, it is often practical to express everything in momentum space, for example for scattering
amplitude calculations. This allows one to interpret a diagram’s external legs as incoming or outgoing
particles of given momenta, the internal vertices being particle interactions. Mathematically, this essentially
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entails keeping the propagator in momentum space and using the correspondence between convolutions and
products under Fourier transform. External lines then carry a given momentum, internal vertices come
with a coupling factor (like for position-space calculations) with the added condition of conservation of
momentum (coming from ς-functions via integration of complex exponentials). Any internal momenta are
then integrated over. These guidelines are referred to as (momentum-space) Feynman rules, and we will
briefly use them in section 3.3.

3.2 A first example: two-point correlation function

As a quick exercise, let’s express the two-point correlation function of ω4 theory to first order in perturbation
theory.

⇑ω(x1)ω(x2)⇓ =
+ 1

2 + 1
8

1 + 1
8

+O(ϖ2)

= +
1

2
+O(ϖ2)

= G(x1 ≃ x2)≃
ϖ

2

ˆ
dyG(y ≃ x1)G(0)G(y ≃ x2) +O(ϖ2)

(3.5)

It is worth noting that dividing by the partition function has simplified the term multiplied by 1/8. Such
a diagram is called ”disconnected” – the others being connected diagrams – since it contains an internal
vertex which is disconnected from all external vertices. Generally, division by the partition function will rid
the expansion of disconnected diagrams, although we do not rigorously prove this here.

Furthermore, the first order correction to this correlation function is what is often referred to as a tadpole

diagram. Diagrams such as these involve propagators computed at zero spacing, which are usually divergent.
In the case of a CFT for example, a two-point function goes like |x ≃ y|→2!ϑ , which generally diverges at
x = y. Getting rid of divergences such as these is one of the reasons for renormalization.

3.3 One-loop renormalization of ω4
theory

As an example, let’s consider Klein-Gordon theory perturbed by a ω4 interaction:

S =

ˆ
ddx

(
ϑµωϑ

µω+
m2

0

2
ω2 +

ϖ0

4!
ω4

)
(3.6)

Its (Euclidean) propagator is given by:

G(x≃ y) =
1

(2◁)
d
2

ˆ
ddp

eip(x→y)

p2 +m2
0

(3.7)

When it is evaluated at x = y, using spherical coordinates (see details in [13, 14]):

G(0) =
1

(2◁)
d
2

ˆ
ddp

p2 +m2
0

=
1

(4◁)
d
2

1

&
(
d
2

)
ˆ +↓

0
dp

pd→1

p2 +m2
0

=

(
m2

0

)d/2→1

(4◁)d/2
&

(
1≃

d

2

) (3.8)

If we work in 4 dimensions, this quantity diverges. For the remainder of this work, we adopt the
dimensional regularization scheme, which focuses on getting rid of divergences caused by the dimension of
space by perturbing it. Let’s define ϱ = 4≃ d ↖ 1.

G(0) =

(
m2

0

)1→ ϖ
2

(4◁)2→
ϖ
2
&
(ϱ
2
≃ 1

)
(3.9)

In momentum space, the previous tadpole diagram yields a contribution

≃
1

2
m2

0
ϖ0

(4◁)2

(
4◁

m2

)⇀/2

&
(ϱ
2
≃ 1

)
(3.10)
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We introduce a dimensionless coupling g such that g0 = gµ⇀ (one can easily check using dimensional
analysis that [g0] = Ld→4) where µ is an energy scale. The tadpole contribution can now be written

≃
1

2
m2 g

(4◁µ2)2

(
4◁

m2

)⇀/2

&
(ϱ
2
≃ 1

)
=

ϖ→0

1

2
m2 g

(4◁)2

(
2

ϱ
+ ψ(2) + ln

(
4◁µ

m2

)
+O

(
ϱ2
))

(3.11)

We don’t spend time on justifying this asymptotic expansion here, further details can be found in [13].
This expression yields a first-order pole in ϱ. One trick for getting rid of it is to use a counter-term in the
original action. This e#ectively consists in rewriting the action with respect to the renormalized quantities
[ω], [ω2], [ω4] m, ϖ, as opposed to the bare quantities ω, m0, ϖ0.

S =

ˆ
ddx

(
1

2
ϑµ

(
Z

1
2
1 [ω]

)
ϑµ

(
Z

1
2
1 [ω]

)
+

Zmm2

2
Z2[ω

2] +
Zςϖ

4!
Z4[ω

4]

)
(3.12)

where for any index A:

ZA = 1 +
+↓∑

k=1

fA
k (g)

ϱk
(3.13)

and fk(g) = O(gk). The constant terms account for the original action, while the k = 1 terms are the
so-called one-loop counter-terms added to the Lagrangian to get rid of the poles appearing in the tadpole
diagram as well as other diagrams. Moreover, Z factors in front of fields are typically referred to as wave-

function renormalization factors. The wavefunction and mass renormalization modifies the momentum-space
propagator to first order in g [15]:

Ĝ =
1

Z1p2 + ZmZ2m2
↙

1

p2 +m2 + f1
1 (g)p

2+(fm
1 (g)+f2

1 (g))m
2

⇀

↙
1

p2 +m2
≃

1

ϱ

1

p2 +m2

(
f1
1 (g) p2 + (fm

1 (g) + f2
1 (g))m

2
) 1

p2 +m2

(3.14)

The second term yields an interaction term ≃
(
f1
1 (g) p2 +

(
fm
1 (g) + f2

1 (g)
)
m2

)
/ϱ in momentum space,

which we want to counteract the tadpole interaction exactly. This can be done for f1
1 (g) = 0, f2

1 (g) = 0 and

fm
1 (g) =

g

16◁2
(3.15)

This leads to

m2
0 = m2

(
1 +

g

16◁2

1

ϱ

)
(3.16)

where m can be interpreted as an e#ective mass at the scale µ, accounting for all of the one-loop interactions.
It is worth noting that in this scheme, we’ve only gotten rid of the divergent term in the tadpole diagram,
and we’ve left the finite terms intact. This is called the minimal subtraction, or MS scheme. We could also
get rid of the finite terms in the ”extended’” minimal subtraction, or MS scheme. Furthermore, notice that
in the one-loop structure of ω4 theory, Z1 and Z2 = 1. This implies that the renormalized and the bare fields
coincide (in section 3.5 we’ll also learn to say that the field’s anomalous dimension is zero).

In one-loop renormalization, tadpoles are not the only diverging class of diagrams. Diagrams in the
second-order expansion of the four-point correlation function also lead to divergences, which can be removed
by acting on Zς. It is convenient to reason in momentum space here as well. For incoming total momentum
k, modulo permutations, the divergent integral is

ˆ
ddp

(2◁)d
1

(p2 +m2)
[
(k ≃ p)2 +m2

 ∝ µ⇀ g2

(4◁)2
2

ϱ (3.17)

where ∝ denotes the inclusion of a pole in the expansion of the integral (see [13] for justification). There are
three diagrams which contribute such poles, and a combinatorial factor to take into account. This leads to

ϖ1 = ϖ

(
1 +

3gµ→⇀

(4◁)2
1

ϱ

)
(3.18)
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Figure 1: Expansion of the four-point function up to second order in the coupling in momentum space (fixed
incoming and outgoing momenta). Taken from [16].

3.4 Another point of view: the renormalization group

It might seem di!cult to attribute physical meaning to the previously described MS scheme beyond its
mathematical utility. However, one can resort to another picture to develop a better intuition of what is
going on in the previous subsection, namely that of the renormalization group. Broadly speaking, the renor-
malization group stems from the observation that, in order to describe a physical system with many degrees
of freedom at a given scale, one can forget the microscopic details at much smaller scales. Increasing the
scale leads to an e#ective ”coarse-grained” theory with scale-dependent couplings, and this scale-dependence
is constrained by the requirement that the physics remain unchanged under these so-called renormalization
transformations. Incidentally, these transformations form a semi-group under composition, hence the looser
denomination ”renormalization group” (RG for short).

We therefore equip a given theory with a maximum energy scale (or momentum scale in what follows,
the distinction is unimportant here), which would incidentally provide a regularization scheme to make some
of the integrals in the previous section finite. Let’s start o# with a maximum energy scale µ0. Let Cµ be
the set of scalar fields whose energy is less than µ, and Cµ1,µ2 the set of fields whose energy is between µ1

and µ2. For the sake of illustration, suppose we start with the following action:

S[ω] =

ˆ
ddx


1

2
ϑµωϑ

µω+
∑

i

gi0Oi(x)


= S0[ω] + S1[gi0;ω] (3.19)

where S0 denotes the free field action, S1 denotes the interaction part, the gi0 are the bare coupling constants,
and Oi are local operators, typically powers of the ω fields. A regularized partition function is then given
by:

Zµ0 =

ˆ
Cµ0

Dωe→S[gi0;↽] (3.20)

Next, we split a given field into its low energy and high energy parts relative to a new scale µ < µ0,
respectively 0 and ψ. This can be done by introducing the cuto#s into the inverse Fourier transform. We
thus have ω = 0 + ψ. Explicitly writing the action with respect to this decomposition yields the following
decomposition of the action:

S[ω] = S0[0] + S0[ψ] + Sint [0,ψ] (3.21)

where we’ve also assumed that the local operators have the appropriate form to lead to the above expression.
We also assume that the path integral measure factorizes appropriately.

Zµ0 =

ˆ
Cµ

D0e→S0[⇁]

ˆ
Cµ,µ0

Dψe→S0[ψ]→Sint[⇁,ψ] (3.22)

Here, the scale transformation consists in going from an integral over Cµ0 to one over Cµ. Thus, we can
define a new action for the interactions, which describes the e#ective interactions at the new scale µ:

Se#,µ[0] = ≃ ln

ˆ
Cµ,µ0

Dψe→S0[ψ]→Sint[gi0;⇁,ψ]


(3.23)

By construction, this renormalization transformation preserves the partition function Zµ, where we in-
troduce its dependence on the scale µ. One can then introduce new, ”running” couplings gi(µ) describing
the e#ective interactions depending on the µ scale. Supposing that the partition function depends smoothly
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on the scale, taking the derivative of the equation expressing the invariance of the partition function with
respect to µ yields:


µ

ϑ

ϑµ
+ µ

ϑgi
ϑµ

ϑ

ϑgi


Zµ(g) = 0 (3.24)

This equation is what is known as a Callan-Symanzik equation. Note that we’ve added a factor of µ.
This is because conventionally one uses the logarithm of the UV cuto# (another expression for µ, ultraviolet
signaling high energy). The above Callan-Symanzik equation then becomes:


ϑ

ϑ lnµ
+ εi(gi)

ϑ

ϑgi


Zµ(g) = 0 (3.25)

where we define a new quantity – the ε-function for a coupling g – which tells us how the coupling depends
on the energy scale:

ε(g) :=
ϑg

ϑ lnµ
(3.26)

This function gives a very useful criterion for determining whether or not a point in the space of theories
is a critical fixed point. Indeed, for such a point of coupling g↔, ε(g↔) = 0. This will be essential to defining
a fixed point of the LRI in the last section.

3.5 Callan-Symanzik equations and anomalous dimensions

Let’s keep the new RG picture. Suppose that under a renormalization flow, the e#ective action can be
expressed as a bare action with counterterms via renormalization parameters like Z(g, ϱ). At a scale µ, the
n-point correlation function for a local operator O(x) can be written as:

Gµ(x1, . . . , xn) =
1

Zµ

ˆ
Cµ

D%O(x1) . . .O(x1)e
→Seff,µ[”] (3.27)

The Z factors, previously used as a ”mathematical trick” to subtract infinities, can be interpreted as
the consequence of quantum corrections of the action dude to the high energy modes being integrated out.
Clearly, since the change in the integration measure in the numerator cancels with that in the denominator,
the n-point correlation function for bare operators is related to the one for running operators via:

G0(x1, . . . , xn) = ZnGµ(x1, . . . , xn) (3.28)

Requiring the non-renormalized correlator to remain scale independent leads to the following generalized
Callan-Symanzik equation:


ϑ

ϑ lnµ
+ εi

ϑ

ϑgi
+ n

1

Z

ϑZ

ϑ lnµ


Gµ(x1, . . . , xn) = 0 (3.29)

It’s worth noting that the third term depends on the power of Z (we used ω = Z1/2[ω] for the Klein-
Gordon field), and hence there might occasionally be an additional factor of 1/2 in the literature. This
equation deviates from the Callan-Symanzik equation of the previous subsection by a term proportional to

1O :=
1

Z

ϑZ

ϑ lnµ
(3.30)

This is known as the anomalous dimension of the field. Incidentally, this is to be compared to the scaling
dimension of an operator. Indeed, let s = µ|x| be a dimensionless variable such that

G(x, 0) =
f(s, g)

|x|2!O

(3.31)

where we use the expression of a two-point function in CFT to provide this ansatz. At large distances, or
in the IR (infrared) as it is often said in the literature, scale dependence vanishes and the Callan-Symanzik
equation states that [sϑs + 21O] f(s, g) = 0. Integrating this and plugging it back into G(x, 0) yields

G(x, 0) ⇔
1

|x|2(!O+γO)
(3.32)

Hence, 1O is referred to as an anomalous dimension in that it encodes how the scaling dimension shifts from
its classical scaling dimension under an RG flow [17]. Note that we’ve previously established that Z1 = 1
under one-loop renormalization, and therefore the Klein-Gordon field didn’t gain an anomalous dimension.
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3.6 ω4
theoretic ε-function and Wilson-Fisher fixed point

Let’s return to the one-loop renormalization of ω4 theory. The renormalization of the ϖ coupling involves
introducing a factor Z such that:

ϖ0 = Z(g, ϱ)gµ⇀ (3.33)

where Z(g, ϱ) = 1 + f(g)/ϱ for one-loop renormalization, and f(g) is a power series in g which is a O (g).
The bare ϖ coupling must be independent of the µ scale, hence

ϑϖ0

ϑ lnµ
= ε (g)µ⇀

(
1 +

f

ϱ

)
+ gϱµ⇀

(
1 +

f (g)

ϱ

)
+

gµ⇀f ↑ (g)

ϱ
ε (g) = 0 (3.34)

i.e. to second order in g:

ε(g) = ≃ϱg + g2f ↑ (g) (3.35)

For ω4 theory, we’ve already established that f(g) = 3g
16▷2 . Before going further, it will be useful to

introduce some nomenclature: an interaction is said to be: relevant when it becomes significant at low
energies (or its coupling has dimensions of a positive power of energy); irrelevant when it becomes insignificant
at low energies (or its coupling has dimensions of a negative power of energy) and marginal otherwise (when
the coupling is dimensionless). Notice that there is a trivial fixed point given by g = 0. This is just the
free theory (Klein-Gordon here). Since the coupling is relevant, the interaction becomes negligible at high
energies, and therefore one refers to this as the ultraviolet (UV) fixed point. However, there is a non-trivial
fixed point given by [17]:

g = g↔ =
ϱ

f ↑(g)
=

16◁2ϱ

3
(3.36)

This is sometimes referred to as the Wilson-Fisher (WF) fixed point, and it is an IR fixed point. Indeed,
one typically drives a theory to the WF point by turning on a marginally relevant interaction, thus making
it flow to the IR. At this point, we recover scale invariance. However, this does not automatically imply
conformal invariance. Nevertheless, we will be working at an analogous fixed point in section 4.6 and show
that this scale invariance is indeed promoted to conformal invariance.

3.7 The OPE and normal-ordering

To conclude this section on the essential tools from QFT, let’s look at another useful way of renormalizing
a theory (typically a CFT here). Indeed, another way to regularize diagrams with zero-spacing propagators
G(0) (tadpoles) is normal-ordering. In canonical quantization, this amounts to keeping annihilation opera-
tors ”on the right” relative to creation operators. Expressions are typically sandwiched between ⇑0| and |0⇓
since one usually evaluates vacuum expectations, and this ordering ensures many of the vacuum terms are
annihilated, thus significantly simplifying calculations.

In the Gaussian theories considered in this work – which are also CFTs – normal-ordering a product
of operators is closely linked to the OPE. Indeed, consider two local operators O1 and O2 such that the
following OPE holds for x ↔ y:

O1(x)↑O2(y) =
↓∑

k=1

ϖ12k

|x≃ y|!1+!2→!k
Ok(x≃ y) (3.37)

where we order the operators of the theory by increasing scaling dimension. Let K ⇐ N↔ such that $k →

$1 +$2. Such a K always exists in a Gaussian theory, since one can increase scaling dimensions by taking
arbitrarily high powers of a given operator (no anomalous dimensions). Therefore, when x ↔ y, the following
quantity remains finite:

: O1(x)↑O2(y) : = O1(x)↑O2(y)≃
K→1∑

k=1

ϖ12k

|x≃ y|!1+!2→!k
Ok(x≃ y)

=
↓∑

k=K

ϖ12k

|x≃ y|!1+!2→!k
Ok(x≃ y)

(3.38)

This is referred to as the normal-ordered product of O1 with O2, and one can check by inserting it in
correlation functions that this eliminates tadpole divergences. This is particularly useful in a massless
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theory (which has to be the case for a CFT), since one cannot conduct mass renormalization as we did
in a previous subsection to take care of tadpoles. In what follows, we will always assume products to be
normal-ordered and drop the double-colon notation. We are now fully equipped to address the LRI.

4 The Long-Range Ising Model

4.1 Introduction to the LRI

Spin models, such as the Ising model, were historically introduced to explain ferromagnetism, although their
study is now useful to the understanding of entire universality classes. According to classical electrodynamics,
a magnetic dipole 2µ in d spatial dimensions produces a magnetic field given by

2B(2r) =
k

rd+2

(
d (2r · 2µ)2r ≃ r22µ

)
(4.1)

where k is a constant depending on the magnetic permeability of free space and the geometric properties of
a (d≃ 1)-sphere. Therefore, the potential energy of interaction between two dipoles 2µ1, 2µ2 is:

V = ≃
k

rd+2

(
d (2r · 2µ1) (2r · 2µ2)≃ r2(2µ1 · 2µ2)

)
(4.2)

Hence, the interaction between dipoles goes like the product of dipole moments (which we take to be
spins in accordance with the Wigner-Eckart theorem) times a term that goes like 1/rd. In the usual Ising
model, we ignore spatial dependence and only keep nearest-neighbor interactions. However, we decide here
to keep such dependence and introduce the long-range equivalent of the Ising model.

The LRI is a ”non-local” generalization of the usual short-range Ising model (SRI). Indeed, in this model,
we do not merely consider nearest-neighbor interactions. Rather, we consider that each spin interacts with
every other spin via an interaction going like 1/rd+ϱ where r is the distance between the two spins considered.
The constant 3 can be viewed as the discrepancy between the LRI and the spatial dependence of a dipole
interaction from classical electrodynamics. More specifically, for a ferromagnetic system, we’ll consider the
following Hamiltonian:

H = ≃J
∑

i ↗=j

sisj

|i≃ j|d+ϱ
(4.3)

where one can use a Euclidean norm in d dimensions to define |i ≃ j| in the sum above. Depending on the
value of 3, this model shall exhibit di#erent behaviors. Clearly, for large 3, long-range interactions will be
suppressed and we’ll recover the SRI. However, it turns out that there are two other regimes, characterized
by a Gaussian and non-Gaussian critical point respectively. In order to study the 3 dependence of the LRI,
we shall introduce a continuum theory which belongs to the same universality class.

4.2 The continuum theory

Let’s consider the continuum limit of the LRI. This amounts to introducing a lattice spacing a and making it
go to zero. We can then define a scalar field ω such that ω(ai) = si. This leads to the following Hamiltonian:

H = ≃Jaϱ→d
∑

i ↗=j

ω(ai)ω(aj)

|ai≃ aj|d+ϱ
a2d (4.4)

Taking a coupling J(a) = J0ad→ϱ allows this quantity to behave like the following continuum limit as a ↔ 0:

H = ≃J(a)

ˆ
ddxddy

ω(x)ω(y)

|x≃ y|d+ϱ
(4.5)

Therefore, since one can flow from the lattice to the continuum, in accordance with universality, one
can replace the study of the discrete model by a continuous theory. Moreover, we turn on a relevant ω4

interaction since we’ll want to drive the theory to the IR:

S = S0 + S1 =

ˆ
ddxddy

ω(x)ω(y)

|x≃ y|d+ϱ
+

g0
4!

ˆ
ddxω(x)4 (4.6)

Note that we haven’t included a mass term, quadratic in the scalar field. Indeed, such a term would introduce
a length scale (length has units of inverse mass in natural units).
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Figure 2: Critical behavior of the LRI according to di#erent values of d and 3. Plot taken from [2].

It turns out that the first term can be defined using a ”fractional Laplacian” Lϱ =
(
≃ϑ2

)ϱ/2
(see appendix

B.1 for detailed justification), and we can rewrite the full action as

S = S0 + S1 =
Nϱ

2

ˆ
ddxω(x)Lϱω(x) +

g0
4!

ˆ
ddxω(x)4 (4.7)

where we introduce a normalization factor Nϱ which normalizes the two-point function of the free Gaussian
theory (this constant doesn’t a#ect the physics of the LRI). It’s worth noting that the fractional Laplacian is
a non-local operator, as opposed to the usual d’Alembertian. Indeed, it can be defined up to a normalization
by:

Lϱω(x) ⇔

ˆ
ddy

ω(y)

|x≃ y|d+ϱ
(4.8)

The first term in this action closely resembles that of a free scalar field, if one allows for the D(x, y)
operator to be non-local (recall notation from section 3.1). This term is in fact Gaussian, hence a field whose
action is S0 is a type of generalized free field (GFF).

4.3 Critical behavior

Before delving into the discussion of conformal invariance in the LRI, let’s start by giving a qualitative
description of how the critical theory changes depending on the 3 parameter. As a prerequisite, let’s calculate
the dimension of the coupling constant g0 in equation (4.7). Clearly, the GFF has dimensions of µ(d→ϱ)/2,
hence g0 has dimensions of µd→2ϱ (where µ stands for an energy scale). This entails that the quartic
interaction is irrelevant for 3 < d/2, marginal for 3 = d/2 and relevant for 3 > d/2. It turns out that there
is another boundary for 3, defined using a critical exponent from the SRI. Indeed, the scaling dimension of
ω is $↽ = (d ≃ 3)/2 (this can be easily shown using a change of variables in the free action, or simply by
dimensional argument), and from the constraints of CFT on correlation functions ⇑ω(x)ω(y)⇓ = |x ≃ y|ϱ→d

(we’ll see that the GFF theory is conformally invariant shortly). In the SRI, one defines the φ critical
exponent, which depends on d, such that at the second order phase transition:

⇑sisj⇓ =
1

|i≃ j|d+◁SRI→2
(4.9)

Hence, for 3 → 3↔ := 2 ≃ φSRI , one can expect the critical theory to be the SRI, and this is in fact the
case. From the previous subsection, when the quartic perturbation is irrelevant i.e. when 3 < d/2, one can
take the critical theory to be that of a GFF, also referred to as a Gaussian theory. In summary, the critical
theory is: Gaussian for 3 < d/2, non-trivial, non-Gaussian for d/2 < 3 < 3↔ and SRI for 3↔ < 3.

It is also worth noting what happens at d = 4. This value is the upper critical dimension of the SRI,
hence the corresponding critical exponents are those of the mean field: φSRI = 0. The LRI fixed point is
given by 3 = d/2 = 2 while the SRI crossover happens at 3 = 3↔ = 2; these two values coincide and therefore
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the theory directly crosses over from a GFF to the SRI. In order to study the non-trivial theory, we shall
therefore assume d < 4.

In the following subsections, we study the GFF + ω4 theory given above in order to justify the conformal
invariance of the LRI at the d = 3/2 crossover. Unfortunately, the LRI does not have a stress tensor (see
[18] for a motivation of this fact), and as such justifying conformal invariance will require more involved
arguments.

4.4 The Gaussian theory

In this section, we prove conformal invariance of the Gaussian/GFF theory and calculate some correlation
functions using the machinery developed in section 3.

4.4.1 The propagator

As a prerequisite to using Wick’s theorem to calculate correlators, we need to calculate a fundamental
building block: the propagator of the GFF theory. It is given by the Green’s function of the fractional
Laplacian, which can be solved for using the Fourier transform:

G(x1 ≃ x2) =

ˆ
ddp

(2◁)d
eip·(x1→x2)

|p|ϱ
(4.10)

If it is consistent with CFT, this quantity must go like |x≃ y|→2!ϑ . To show that this holds, we use the
following identity (easily derived using a change of variables in the definition of the &-function):

1

|p|ϱ
=

1

&
(
ϱ
2

)
ˆ +↓

0
t
ϱ
2 →1e→t|p|2dt (4.11)

Next, we plug this into equation (4.10). This implies (integrals can be swapped using Fubini’s theorem):

G(x) =
1

&
(
ϱ
2

)
ˆ +↓

0
dtt

ϱ
2 →1

ˆ
ddp

(2◁)d
e→t|p|2+ipx (4.12)

The momentum space integral is a well-known Gaussian integral, whose evaluation yields:

G(x) =
1

(4◁)
d
2&

(
ϱ
2

)
ˆ +↓

0
dte→

|x|
2

4t t
ϱ↑d
2 →1 (4.13)

Next, the change of variables u = |x|2/(4t) turns the remaining integral into a &-function, and we obtain the
desired result:

G(x) =
2d→ϱ&

(
d→ϱ
2

)

(4◁)
d
2&

(
ϱ
2

)
1

|x|d→ϱ
(4.14)

Hence the propagator satisfies the conformality constraints, since $↽ = (d≃3)/2 is the scaling dimension
of the field ω. We can then use the normalization factor Nϱ in front of the GFF action to tune the propagator
to the conventional form G(x≃y) = |x≃y|→2!ϑ . Incidentally, since all correlation functions are given by sums
of products of correlation functions, this computation shows that the free Gaussian theory is conformally
invariant (for a more direct argument, see appendix B.2).

4.4.2 Example of a three-point function

As a follow-up to the closing remark of the previous subsection, let’s compute a three point function of the
theory, for example ⇑ω(x1)ω(x2)ω2(x3)⇓. Wick’s theorem tells us that:

⇑ω(x1)ω(x2)ω
2(x3)⇓ = + +

= G(x1 ≃ x3)G(x2 ≃ x3) +G(x1 ≃ x3)G(x2 ≃ x3)

=
2

|x1 ≃ x3|
2!ϑ |x2 ≃ x3|

2!ϑ

(4.15)

Note that we ignore divergent tadpole diagrams, since we take normal-ordered fields. It turns out that
this respects the form of three-point functions in CFTs. Indeed, ω2 doesn’t gain an anomalous dimension
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Figure 3: Diagrams in the expansion of the four-point correlation function requiring renormalization of the
quartic coupling. Taken from [2].

in a Gaussian theory (this might be the case in an interacting theory however). Hence $↽2 = 2$↽, and
|x1 ≃ x2|

2!ϑ→!ϑ2 = 1. We can also extract the CFT datum ϖ112 = 2 here.

4.5 Renormalization of the GFF + ω4
theory

Renormalization of the coupling. Let’s consider the renormalization via dimensional regularization
of the GFF theory perturbed by a marginally relevant ω4 interaction. We will therefore be working at
3 = (d + ϱ)/2 with ϱ ↖ 1, and use a dimensionless coupling g such that g0 = gµ⇀ for an energy scale µ.
Recall that we’re working with normal-ordered products, hence we only need to renormalize the coupling
by studying the four-point correlation function of ω. Indeed, divergences occur due to the diagrams in
figure 3 present in the expansion of the four-point correlation function. These divergences arise when the ω4

insertions are close to each other, thus the OPE ω4(x) ↑ ω4(0) in the Gaussian theory proves useful in this
situation (see appendix C for a derivation):

ω4(x)↑ ω4(0) ∝
72

|x|d→⇀
ω4(0) (4.16)

This entails that the second diagram in figure 3 yields a short-distance contribution

72↑
1

2
↑

g2µ2⇀

4!2

ˆ
|x|↘1

ddx

|x|d→⇀
= 36

g2

4!2
Sd

ϱ
+ finite term (4.17)

where Sd is the volume of the unit (d ≃ 1)-sphere (easily derived by expressing
↘
◁
d
as a d-dimensional

Gaussian integral and going to spherical coordinates). In order to remove this pole, we write g0 = Z(g, ϱ)µ⇀,
with

Z(g, ϱ) = 1 +
+↓∑

i=1

fk(g)

ϱk
(4.18)

In one-loop renormalization, one can therefore shift the coupling by

ςg =
36Sdg2

4!ϱ
=

3Sdg2

2ϱ
(4.19)

which corresponds to f1(g) = 3Sdg/2 = Kg. This entails that the ε-function of the theory up to O(g3) is

ε (g) = ≃ϱg +Kg2 = ≃ϱg +
3Sdg2

2
(4.20)

The corresponding Wilson-Fisher critical point is then given by g↔ = ϱ/K. The main goal of the final part
of this work is to justify conformal invariance at this fixed point.

Wavefunction renormalization of ωn
. It turns out that composite operators ωn need to be renormalized.

We hence define the renormalized composite fields [ωn] such that ωn = Zn(g, ϱ) [ωn]. Consider the following
two-point function:

⇑ωn(x)ωn(0)⇓ = ⇑ωn(x)ωn(0)⇓0 ≃
gµ⇀

4!

ˆ
ddy⇑ωn(x)ωn(0)ω4(y)⇓0 +O(g2) (4.21)

where when the insertion ω4(y) approaches ωn(0), a pole in ϱ appears. Indeed, according to the OPE of
ωn(0)↑ ω4(y) (again, see appendix C for a derivation):

ωn(x)↑ ω4(0) ∝
6n(n≃ 1)

|x|d→⇀
ωn(0) (4.22)
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which entails

⇑ωn(x)ωn(0)⇓ ∝ ⇑ωn(x)ωn(0)⇓0


1≃

gµ⇀

4!
6n(n≃ 1)

ˆ
|y|↘1

ddy

|y|d→⇀



∝ ⇑ωn(x)ωn(0)⇓0

(
1≃

n(n≃ 1)Sdg

4ϱ

) (4.23)

One can easily check that the pole in ϱ is regularized taking Zn(g, ϱ) = 1≃Kng/ϱ with Kn = n(n≃ 1)Sd/4.
This yields the following anomalous dimension:

1n(g) = Kng +O(g2) (4.24)

and in particular at the WF fixed point:

1n(g↔) = n(n≃ 1)/6ϱ+O(ϱ2) (4.25)

4.6 Conformal invariance in the LRI fixed point

We start by providing a test of conformal invariance, following [2]. This consists in calculating a two-point
correlation function and ensuring that it respects the CFT constraints given in the first section of this work
(we’ll calculate one example, the second can be found in [2, 19]). After having motivated conformal invariance
using this test, we prove it to all orders in perturbation theory by making use of the Ward identities.

4.6.1 A test of conformal invariance

Two-point correlation functions of identical operators aren’t enough to di#erentiate between conformal and
scale invariance, since both predict the same form. However, only the former predicts the vanishing of two-
point functions of distinct primaries. As for a pair of descendants in CFT, their two-point function will be
non-zero provided that they can be written as

(
ϑ2

)n
O for the same primary O. Since this implies scaling

dimensions di#ering by an even integer, a good test of conformal invariance might be to study the two-point
function of two operators whose dimensions do not di#er by an even integer.

At the LRI fixed point, ω3 can’t be a descendent of ω by dimensional argument. We’ll therefore prove
that the correlation function ⇑ωω3

⇓ cancels perturbatively in ϱ. The UV dimension of ω3 being 3$↽ (ignoring
a potential anomalous dimension), we can write

F (x, g, µ) := ⇑ω(x)

ω3


(0)⇓ =

f(s, g)

|x|!ϑ+3!ϑ
(4.26)

where

ω3


is the renormalized operator derived in section 4.5 and s = µ|x| is a dimensionless variable. This

function should be a a solution of the Callan-Symanzik equation for correlation functions (see section 3.5).
This leads to the following equation for f :

[sϑs + ε(g)ϑg + 13(g)] f(s, g) = 0 (4.27)

It is worth noting that in the IR, the solution to the Callan-Symanzik equation above becomes

f(s, g) ↙ Cs→γ3(g↓) (4.28)

since ε(g) ↔ 0 and 13(g) ↔ 13(g↔) (this is a similar story to the end of section 3.5). However, the general
solution to this Callan-Symanzik equation (whose derivation is found in [20]) is

f(s, g) = f̂(g(s, g)) exp

(
≃

ˆ s

1
d ln s↑13 (g(s

↑, g))

)
(4.29)

where, in keeping with [2], g is the running coupling defined by:

{
sϑsg = ≃ε(g)

g|s=1 = g
(4.30)

Since f(s = 1, g) = f̂(g), the prefactor C defined in the IR by equation (4.28) is given by C = f̂(g↔).
We want to show that C = O(ϱ2) here. To do so, we start by computing the two-point function before
renormalization F0(x). To second order in the coupling, keeping the combinatorial factors implicit:
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F0(x) := ⇑ω(x)ω3(0)⇓ = + (4.31)

To carry out these computations, the following integrals are useful (see appendix D.1 for values of the w
coe!cients):

ˆ
ddy

|x≃ y|A|y|B
=

wAwB

wA+B→d

1

|x|A+B→d
(4.32)

Indeed, one can then use the fact that G(x≃ y) = |x≃ y|→2!ϑ and Wick’s theorem to arrive at:

F0(x) =
R1g0
|x|d→2⇀

+
R2g20
|x|d→3⇀

+O(g30) (4.33)

where R2 = O(1) and R1 = O(ϱ) (see appendix D.2 for full computation). We now include renormalization
of the coupling and of the composite field ω3:

{
g0 = Zgµ⇀ =


g +Kg2ϱ→1 +O(g3)


µ⇀

ω3 = Z3ω3 =

1≃K3gϱ→1 +O(g2)

 
ω3

 (4.34)

This allows us to compute the renormalized correlation function up to second order in g:

F (x) =
gR1s⇀ + g2


R1(K +K3)ϱ→1s⇀ +R2s2⇀



|x|d→⇀
(4.35)

Setting s = 1 and using the explicit values of the various constants, one can extract the value of the
prefactor at the fixed point:

C = f̂(g↔) = ≃R1ϱ
→1(≃ϱ+Kg2

↔
) = ≃R1ϱ

→1ε(g↔) = 0 (4.36)

This is what we were meant to show. Next, we generalize this result to all orders in perturbation theory.
To do so, we start by using the equations of motion of the theory:

NϱLϱω+
g0
3!
ω3 = 0 (4.37)

This entails that ⇑ω3(x)ω(0)⇓ ⇔ Lϱ⇑ω(x)ω(0)⇓, hence one can use the usual two-point function of the theory
to extract information on the correlation function in question. Since the field does not acquire an anomalous
dimension in one-loop renormalization, its two-point function can be written as ⇑ω(x)ω(0)⇓ = ⇀(x)|x|→2!ϑ

where ⇀(x) = ⇀̂(g(s, g)). To second order in perturbation theory, the two-point function is given by (see
figure 5 for relevant connected diagrams):

⇑ω(x1)ω(x2)⇓ =
1

|x1 ≃ x2|
2!ϑ

+
1

6
(4.38)

Since this diagram is slightly simpler than the computations involving composite operators, let’s calculate
it explicitly:

= g2
ˆ

ddy1d
dy2G(y1 ≃ x1)G(y1 ≃ y2)

3G(x2 ≃ y2)

= g2
ˆ

ddy1d
dy2

1

|y1 ≃ x1|
2!ϑ

1

|y1 ≃ y2|6!ϑ

1

|x2 ≃ y2|2!ϑ

= g2
ˆ

ddy1d
dy2

1

|y1 ≃ (x1 ≃ y2)|2!ϑ

1

|y1|6!ϑ

1

|x2 ≃ y2|2!ϑ

= g2
w2!ϑw6!ϑ

w8!ϑ→d

ˆ
ddy2

1

|x1 ≃ y2|8!ϑ→d

1

|x2 ≃ y2|2!ϑ

= g2
w2

2!ϑ
w6!ϑ

w10!ϑ→2d

1

|x1 ≃ x2|
10!ϑ→2d

= g2
◁d&

(
≃

d
4

)

&
(
3d
4

) 1

|x1 ≃ x2|
2!ϑ

(4.39)
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In the last line, we’ve used the fact that we’re close to the crossover 3 = d/2 and this expression behaves
smoothly near that boundary. Incidentally, this result supports conformal invariance, since it shows that
the two-point function respects the conformal constraints in the first non-trivial correction. It’s also worth
noting that this would not be the case for arbitrary values of 3. Hence, we can write

⇀̂(g) = 1 +Qg2 (4.40)

with Q = (◁d/6)& (≃d/4) /& (3d/4). Therefore, at short distances/high energy, ⇀(x) ↔ 1 since g ↔ 0 (the
interaction is relevant so negligible in the UV). At long distaces/low energy, by definition g = g↔ = O(ϱ)
hence ⇀(x) = 1 +O(ϱ2). Next, we want to describe the behavior of ⇀ as we approach the IR. To do so, let’s
consider a scale µc at which the coupling g ′ g↔/2, and let’s linearize the ε-function close to g↔, considering
g = g↔ + ςg. This yields

s
dςg

ds
= (ϱ≃ 2Kg↔)ςg = ≃ϱςg (4.41)

and thus ςg ′ ϱs→⇀ (the factor ϱ comes from choosing g ′ g↔/2). It follows that one can write

g = g↔ ≃O

(
ϱs→ϑ↔(g↓)

)
(4.42)

where ε↑(g↔) = ϱ+O(ϱ2), and hence close to the IR (equation (4.40) allows us to write the following):

⇀(x) = ⇀(g↔) +O

(
ϱ2s→ϑ↔(g↓)

)
(4.43)

We are now in a position to study the fractional Laplacian applied to the two-point function of ω. Defining
the position-space kernel of the fractional Laplacian T (x≃ y) ⇔ |x≃ y|→d→ϱ (to be compared with equation
(4.8)):

Lϱ⇑ω(x)ω(0)⇓ ⇔

ˆ
ddyT (x≃ y)⇀(y)|y|→2!ϑ

=

ˆ
ddyT (x≃ y)⇀(g↔)|y|

→2!ϑ +

ˆ
ddyT (x≃ y)(⇀(y)≃ ⇀(g↔))|y|

→2!ϑ

(4.44)

For large x, the first integral cancels exactly (by definition of the kernel, it is proportional to ς(x)), while in
the second the main contribution will come from large y. Hence the asymptotics in equation (4.43) apply:

Lϱ⇑ω(x)ω(0)⇓ ′

ˆ
ddyT (x≃ y)ϱ2s→ϑ↔(g↓)|y|→2!ϑ ⇔

1

|x|ε
(4.45)

where ⇁ = 3+2$↽+ε↑(g↔) (this integral is proportional to the type of integral calculated in appendix D.1).
Next, recall equation (4.25), which implies 13(g↔) = ϱ+O(ϱ2) and hence:

⇁≃ ($↽ +$↽3) = 3 + 2$↽ + ε↑(g↔)≃$↽ ≃ 3$↽ ≃ 13(g↔)

= 23 ≃ d = ϱ+O(ϱ2) > 0
(4.46)

Therefore ⇑ω(x)ω3(0)⇓ obeys two distinct scaling laws at the LRI fixed point. This necessarily entails
C = 0 exactly, which concludes the proof that this correlator vanishes. This is in line with conformal
invariance in the LRI fixed point, although this correlator might seem special, in that it involves two operators
which are closely linked to each other via the equations of motion. One could also show that a more generic
correlator, such as ⇑ω2(x)ω4(0)⇓, vanishes. This is done in [2] and follows the exact same method as far as
perturbative cancelation of the correlator is concerned.

4.6.2 Perturbative proof of conformal invariance in the LRI fixed point

So far we have been verifying that the key consequences of conformal invariance hold in the LRI fixed point.
In this section, we go over the key steps to actually proving conformal invariance perturbatively in the ϱ
expansion.

22



Ca!arelli-Silvestre trick. To begin with, we show that the Gaussian theory is equivalent to a higher
dimensional theory which is conformal – this is referred to as the Ca#arelli-Silvestre trick in [2] (the original
details are found in [21]). Consider a scalar field %(x, y) where x ⇐ Rd and y ⇐ Rp (both spaces are endowed
with the usual Euclidean metric) with p = 2≃ 3 (we suppose the results we derive below hold when 3 is not
an integer). Consider the following action:

SCS =

ˆ
ddxddy


(ϑx%)

2 + (ϑy%)
2


(4.47)

defining ω(x) = %(x, 0), such that the usual space we work in is a hyperplane embedded in a d+p-dimensional
flat space. Let’s also assume we can restrict ourselves to %(x, y) = %(x, |y|). In spherical coordinates, this
action can hence be written as

SCS = Sp

ˆ
ddxdzz1→ϱ


(ϑx%)

2 + (ϑz%)
2


(4.48)

The Euler-Lagrange equations yield

ϑ2
x%+

1≃ 3

z
ϑz%+ ϑ2

z% = 0 (4.49)

Going to momentum space relative to x gives

≃p2%̂+
1≃ 3

z
ϑz%̂+ ϑ2

z %̂ = 0 (4.50)

For small z, the solution to the above equation can be expanded as

%̂(p, z) =
(
1 +K (|p|z)

ϱ
2 +O(z2)

)
ω̂(p) (4.51)

Next, we perform integration by parts in the Ca#arelli-Silvestre action and move to momentum space:

SCS = ≃Sp

ˆ
ddxdzz1→ϱ%ϑz% ⇔

ˆ
ddxddpddqdzz1→ϱ%̂(p, z)ϑz%̂(p, z)e

i(p+q)x

⇔

ˆ
ddpddqdzz1→ϱ%̂(p, z)ϑz%̂(≃p, z)

(4.52)

For small z, we can plug expression (4.51) into the above action:

SCS ⇔

ˆ
ddpω̂(p)|p|ϱω̂(≃p) (4.53)

It turns out that this corresponds exactly to the GFF part of the continuum LRI action (see equation (B.1)
in the appendix).

Defect QFT. Now that we’ve embedded the free theory into a larger space, we consider the following
interacting theory:

S =
1

2

ˆ
dd̄X (ϑM%)2 +

g0
4!

ˆ
y=0

ddx%4 (4.54)

where we keep the CS field % from the previous paragraph, and define the embedded space described
X = (x, y) in d̄ = d + p dimensions. The %4 interaction lives exclusively on the y = 0 hyperplane, and
is what is referred to as a defect. For the remainder of this subsection, capital Latin letters run over the
d̄-dimensional space, lowercase Latin letters over the p-dimensional ”perpendicular” subspace, and lowercase
Greek letters over the d-dimensional ”parallel” subspace.

Conformal Ward identities. Contrary to the LRI, the defect QFT has a stress tensor. The canonical
stress tensor of the theory can easily be derived using equation (2.40):

TMN = ϑM%ϑN%≃
1

2
ςMN (ϑK%)2 ≃ ς||MNς(p)(y)

g0
4!
%4 (4.55)

where ς||MN is the Kronecker delta in the parallel subspace. We also need to compute the trace and divergence
of this tensor for what follows:
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{
ϑMTMN = ≃EN + ς(p)(y)DN

TM
M = ≃$↽E ≃ ϱ g0

4! ς
(p)(y)%4 +

(
1
2 ≃

d̄
4

)
ϑ2
K%2 (4.56)

where we define the following new operators:






E = %

≃ϑ2

K%+ ς(p)(y) g03!%
3


EN = ϑN%

≃ϑ2

K%+ ς(p)(y) g03!%
3


DN = g0
3!%

3ϑn% if N = n

(4.57)

It turns out that the %4 = ω4 factors appearing at y = 0 need to be renormalized, and thus acquire
an anomalous dimension. One can show that ω4 = Z4[ω4] with Z4 = ≃ε(g)µ⇀/(ϱg0) in the ϱ-expansion.
Taking into account this wavefunction renormalization of ω4 will prove crucial to the final argument. Using
expressions (2.51) from section 2.7:

{
jMD = TMNXN

jML
K = TMN

(
2XNXL

≃ ςLNX2
) (4.58)

We calculate the divergence of the currents for scale and special conformal transformations respectively:

{
ϑM jMD = ≃XMEM + TM

M

ϑM jML
K =

(
2XNXL

≃ ςNLX2
) (

EN + ς(p)(y)DN

)
+ 2XLTM

M
(4.59)

Inserting these divergences into n-point functions leads to the two following broken Ward identities:

n∑

i=1

[Xi · ϑXi +$↽]G(X1, . . . , Xn) = ε(g)
µ⇀

4!

ˆ
ddxG(X1 . . . Xn;


ω4


(x)) (4.60)

n∑

i=1

(
2Xµ

i X
ς
i ≃ ςµςX2

i

) ϑ

ϑXµ
i

+ 2$↽X
ς
i


G(X1, . . . , Xn) = 2ε(g)

ˆ
ddxxςG(X1 . . . Xn;


ω4


(x)) (4.61)

To prove conformal invariance, we should make use of the above identities after taking y ↔ 0. However,
let’s assume we can swap the limits and first take g ↔ g↔ (this is non-trivial, and further discussed in [2]).
Since the ε-function vanishes, this implies that the Ward identities hold for the full space X coordinates.
Finally, taking y ↔ 0 allows us to translate these identities into Ward identities for the LRI fixed point.
This proves that the LRI fixed point is conformally invariant to all orders in perturbation theory.

5 Conclusion

The LRI is a rich model, whose study has motivated a brief overview of conformal field theory, quantum
field theory and the renormalization group, which are central to modern high energy physics. It has two
interesting crossover points: the LRI and SRI fixed points. In this work, we’ve extensively reviewed the
proof of conformal invariance in the LRI fixed point in [2], which uses a GFF perturbed by a ω4 interaction.
The other crossover point, 3 = 3↔, can also be realized as a fixed point of a GFF + ω4 flow, and proof
of conformal invariance very similarly amounts to showing that the global conformal Ward identities hold.
Incidentally, these arguments could apply to more generic models which are obtained by perturbing a GFF
and using an ϱ-expansion.

However, there is a complementary picture presented in [22, 23] which we have not presented here for
the sake of brevity. A first approach to the SRI crossover might be to perturb the free SRI action with the
non-local fractional Laplacian term extensively studied in this work. However, conceptual di!culties arise
from the fact that the perturbation is non-local and one moves from a phase with a stress tensor to a phase
without one. A modified scheme has been suggested to take care of this issue, which considers the crossover
from the SRI coupled to a ”remnant” LRI GFF field to the intermediate non-Gaussian regime.

Finally, while beyond the scope of this work, it would have been interesting to delve deeper in our study of
CFT. Topics to look at in more detail next include CFT in d = 2 dimensions, the AdS/CFT correspondence,
defects and the conformal bootstrap. In fact, the latter is very relevant to the LRI, with recent work focusing
on bootstrapping the model [24].
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A Wick’s theorem

Since Wick’s theorem is of prime importance in QFT, we supply a justification of the statement here,
following [13]. One way to derive Wick’s theorem is via a generating functional defined by

Z0[j] =

ˆ
Dωe→

1
2

´
ddxddy(↽(x)D(x,y)↽(y)→

´
ddxj(x)↽(x)) (A.1)

where j is a source, or forcing term (comparable to current in the QED action, or to the magnetic field in
the Ising model). We also use the notation Z0 = Z0[j = 0] for the partition function in this subsection.
Correlation functions of the free-field theory can then be obtained by taking functional derivatives of Z0[j]
at j = 0:

G(n)
0 (x1, . . . , xn) :=


ς

ςj(x1)
. . .

ς

ςj(xn)

Z0[j]

Z0



j=0

(A.2)

We can compute Z0[j] to derive all n-point functions of the free theory. This can be done using the following
change of variables:

ω(x) ↔ ω↑(x) = ω(x)≃

ˆ
ddx↑D→1(x, x↑)j(x↑) (A.3)

where we’ve used the functional inverse of D, with the ς-function behaving as the identity:
ˆ

ddx↑D(x, x↑)D→1(x↑, x↑↑) = ς(x≃ x↑↑) (A.4)

This entails

ˆ
ddxddyω(x)D(x, y)ω(y) =

ˆ
ddxddyω↑(x)D(x, y)ω↑(y) +

ˆ
ddxddyddx↑D→1(x, x↑)j(x↑)D(x, y)ω↑(y)

+

ˆ
ddxddyddx↑ω↑(x)D(x, y)D→1(y, x↑)j(x↑)

+

ˆ
ddxddyddx↑ddx↑↑D→1(x, x↑)j(x↑)D(x, y)D→1(y, x↑↑)j(x↑↑)

=

ˆ
ddxddyω↑(x)D(x, y)ω↑(y) + 2

ˆ
ddxω↑(x)j(x)

+

ˆ
ddxddx↑j(x)D→1(x, x↑)j(x↑)

(A.5)

&
ˆ

ddxω(x)j(x) =

ˆ
ddxω↑(x)j(x) +

ˆ
ddxj(x)D→1(x, x↑)j(x↑) (A.6)

Note that D→1(x, x↑) is essentially a propagator, so we assume it commutes with the other terms (this is
the case for the LRI, for Klein-Gordon theory for example). This yields the following transformation of the
energy functional (with a source):

E[ω] ↔ E[ω↑]≃
1

2

ˆ
ddxddx↑j(x)D→1(x, x↑)j(x↑) (A.7)

Hence the generating functional of the theory becomes:

Z0[j] =

ˆ
Dω↑e→E0[↽

↔] exp

(
1

2

ˆ
ddxj(x)D→1(x, x↑)j(x↑)

)
= Z0 exp

(
1

2

ˆ
ddxj(x)D→1(x, x↑)j(x↑)

)
(A.8)

Taking functional derivatives and dividing by the partition function Z0 leads us to the following expression
for n-point functions:

G(n)
0 (x1, . . . , xn) =


ς

ςj(x1)
. . .

ς

ςj(xn)
exp

(
1

2

ˆ
ddxddx↑j(x)D→1(x, x↑)j(x↑)

)

j=0
(A.9)

By expanding the exponential, one will notice that the only non-zero contribution comes from the n/2-th
term in the series, since we are taking n derivatives and the integrand is quadratic in j. Hence:
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G(n)
0 (x1, . . . , xn) =

1

2
n
2

(
n
2

)
!


ς

ςj(x1)
. . .

ς

ςj(xn)

(ˆ
ddxddx↑j(x)D→1(x, x↑)j(x↑)

)n
2



j=0

(A.10)

The case n = 2 leads to G(2)(x1, x2) = D→1(x1, x2) = G(x1 ≃ x2) i.e. the Green’s function of D
(the propagator). Using the above equation, one can convince oneself that after evaluating the functional
derivatives, a sum of products of propagators remains. This yields Wick’s theorem, which is crucial to the
main computations in this work (and QFT):

G(n)(x1, . . . , xn) =
∑

all pairings

G(xi1 ≃ xi2) . . . G(xin↑1 ≃ xin) (A.11)

B The Fractional Laplacian

B.1 S0 and the fractional Laplacian

In this additional section, we justify why the free Gaussian theory of the continuum LRI can be written

using a fractional Laplacian Lϱ =
(
≃ϑ2

)ϱ/2
. Going to Fourier space and back:

S↑ :=

ˆ
ddxω(x)

(
≃ϑ2

)ϱ
2 ω(x)

=
1

(2◁)2d

ˆ
ddxddkddlω̂(k)ω̂(l)kϱei(k+l)x

=
1

(2◁)d

ˆ
ddkddlω̂(k)ω̂(≃k)kϱ

=
1

(2◁)d

ˆ
ddkddxddyω(x)ω(y)eik(y→x)kϱ

(B.1)

To give an estimate of the integral over k, one can use hyperspherical coordinates. Since we only care
about finding what S↑ is proportional to, we need not worry about the angular part of the integral over the
(d≃ 1)-sphere. This yields:

S↑ = |Sd→1|

ˆ
dkd4 sin 4kd+ϱeik|x→y| cos 0 (B.2)

Doing the 4 integral, integrating by parts d+ 3 times and introducing a UV cuto# (here a maximum wave
vector norm) gives:

ˆ
ddkeik(y→x)kϱ ⇔

1

|x≃ y|d+ϱ
(B.3)

which, plugged into the last line of (B.1), yields the desired result.

B.2 Conformal transformation law for the fractional Laplacian

In the main text, we argued for conformal invariance of the free theory using its propagator. Usually, when
one is asked to prove some symmetry holds in a given theory, one studies the e#ect it has on the action.
Therefore, let’s show that the GFF action S0 is conformally invariant (this is also shown in [25]). The
quasi-primary field ω in this model transforms in the following way under conformal transformations:

ω↑(x↑) =

∣∣∣∣
ϑx↑

ϑx

∣∣∣∣
→

!ϑ
d

ω(x) (B.4)

where $↽ = (d≃3)/2 as mentioned previously. One can then show that the fractional Laplacian transforms
in the following manner:

L
↑

ϱω
↑(x↑) =

∣∣∣∣
ϑx↑

ϑx

∣∣∣∣

!ϑ
d →1

Lϱω(x) (B.5)

To show this, one needs to check how the action changes under translations, rotations, scale transforma-
tions and SCTs. As an example, let’s check the case of SCTs, since this is the most intricate. Finite SCTs
are given by equation (2.12). Let’s ignore the normalization of the fractional Laplacian for this calculation.
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L
↑

ϱω
↑(x↑) =

ˆ
ddy↑

ω↑(y↑)
∣∣∣ x→x2b
1→2(b·x)x+b2x2 ≃ y↑

∣∣∣
d+ϱ (B.6)

From equation (2.12), one can easily show that for a SCT:

”(x) =
(
1≃ 2(b · x)x+ b2x2

)2
(B.7)

Hence:

L
↑

ϱω
↑(x↑) = ”(x)

d+ϱ
2

ˆ
ddy↑

ω↑(y↑)
∣∣∣x≃

(
x2b+


”(x)y↑

)∣∣∣
d+ϱ

= ”(x)
d+ϱ
2 ”(x)→

d
2

ˆ
ddy

ω↑

(
”(x)→

1
2 (y ≃ x2b)

)

|x≃ y|d+ϱ

(B.8)

Using ω’s scaling dimension $↽:

L
↑

ϱω
↑(x↑) = ”(x)

!+ϱ
2

ˆ
ddy

ω (y)

|x≃ y|d+ϱ

=

∣∣∣∣
ϑx↑

ϑx

∣∣∣∣

!ϑ
d →1

Lϱω(x)

(B.9)

This implies that

ω↑(x↑)L↑

ϱω
↑(x↑) =

∣∣∣∣
ϑx↑

ϑx

∣∣∣∣
→1

Lϱω(x) (B.10)

So that, having recognized a Jacobian on the RHS, integrating against x↑ yields
ˆ

ddx↑ω↑(x↑)L↑

ϱω
↑(x↑) =

ˆ
ddxω(x)Lϱω(x) (B.11)

One can proceed in a similar way, and this is in fact easier, for the remaining conformal transformations.
Therefore, the Gaussian theory is conformal by direct calculation.

C ωn
↑ ω4

OPE

A key ingredient in the derivation of the ε-function of GFF + ω4 is the ω4
↑ω4 OPE in the free theory. One

can also use the ωn
↑ ω4 OPE to derive the wavefunction renormalization and anomalous dimension of ωn.

In this section, we study the latter OPE, since it contains the former. Suppose we have the following OPE
for x ↔ 0

ωn(x)↑ ω4(0) =
∑

k

ϖn4k

|x|n!ϑ+4!ϑ→!k
Ok(0) (C.1)

where the Ok(x) account for all of the operators of the theory, typically powers of ω and its derivatives. Note
that $↽n = n$↽ in the free theory. Next, we insert this OPE into the following three point function:

⇑ωn(x)ω4(0)ωn(y)⇓ =
∑

k

ϖn4k

|x|n!ϑ+4!ϑ→!k
⇑Ok(0)ω

n(y)⇓ (C.2)

Ignoring the di#erential operators arising from the presence of descendants, the only contribution comes
from Ok = ωn since the two-point function vanishes otherwise.

⇑ωn(x)ω4(0)ωn(y)⇓ =
ϖn4n

|x|4!ϑ
⇑ωn(0)ωn(y)⇓ (C.3)

Thus ϖn4n can be calculated using a ratio of correlation functions. Normal-ordering removes diagrams with
G(0) factors (tadpoles), there are only two classes of relevant diagrams:

ϖn4n

|x|4!ϑ
= (C.4)
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The bold points in the above Feynman diagrams are ωn insertions, and the lines are to be understood as
representing multiple lines, since after applying Wick’s theorem we are left with propagators. To count
the number of diagrams in the numerator, we count the number of ways to associate one of the central ω
operators to the operators on the extremities, and then the number of ways to pair the remaining operators
on the left vertex with the remaining ones on the right vertex. This is given by:

(
4

2

)
↑

n!

(n≃ 2)!
↑

(
2

2

)
n!

(n≃ 2)!
↑ (n≃ 2)! = 6n(n≃ 1)n! (C.5)

The combinatorial factor for the diagram in the denominator is simply given by the number of permutations
of n fields i.e. n!. Hence, ϖn4n = 6n(n ≃ 1), and we arrive at the statement we were meant to prove when
x ↔ 0:

ωn(x)↑ ω4(0) ∝
6n(n≃ 1)

|x|d→⇀
ωn(0) (C.6)

where we recall that in the ϱ-expansion 4$↽ = 2(d≃ 3) = d≃ ϱ.

D Correlation function calculations

D.1 Derivation of useful integrals

When calculating correlation functions to motivate conformal invariance in the LRI fixed point, we used the
following identity:

I(x) :=

ˆ
ddy

|x≃ y|A|y|B
=

wAwB

wA+B→d

1

|x|A+B→d
(D.1)

where wA = (4◁)d/22→A&
(
d→A
2

)
/&

(
A
2

)
. Since it is a key ingredient in previous computations and it is easily

derived using the Gaussian theory’s propagator, we provide a derivation in this section. The main idea is to
calculate it in momentum space, and then perform an inverse Fourier transform back to position space. The
Fourier transform of I obeys

Î(p) :=

ˆ
ddxddye→ipx

|x≃ y|A|y|B
=

ˆ
ddxddye→ip(x+y)

|x|A|y|B
= (2◁)2dGA(p)GB(p) (D.2)

where we’ve applied a translation by +y to x, and GA(p) = KA|p|A→d is the Gaussian propagator for 3 = A.
Transforming back to position space yields

I(x) = (2◁)2dKAKB

ˆ
ddp

(2◁)d
eipx

|p|2d→A→B
= (2◁)2dKAKBK2d→A→B

1

|x|A+B→d
(D.3)

Using the values of the K coe!cients derived in the main text leads to the desired result.

D.2 Composite operator diagrams

In the main text, we skipped the detailed calculation of diagram (4.31). Let’s go through it here for the sake
of completeness.

First diagram. The first diagram is given by:

F1 := ≃4!↑
g0
4!

ˆ
ddy

1

|x≃ y|→2!ϑ

1

|y|6!ϑ
(D.4)

where we’ve taken into account the combinatorial factor (there are 4! ways to associate the legs of the ω4

interaction with the external operators). By using the class of useful integrals derived just previously, this
yields in the ϱ-expansion:

F1 = ≃g0
w d↑ϖ

2
w3 d↑ϖ

2

wd→2⇀

1

|x|d→2⇀
(D.5)

Before taking ϱ ↔ 0, notice that wd→2⇀ has a pole in ϱ. This stems from the expansion of the &-function
near 0. Indeed, for s ↔ 0:
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&(s) =
1

s
&(s+ 1) =

1

s
+ o

(
1

s

)
(D.6)

Therefore when ϱ ↔ 0:

wd→2⇀ = (4◁)
d
2 2→d &(ϱ)

&
(
d
2

) ′
◁

d
2

ϱ&
(
d
2

) (D.7)

The other factors have a limit at ϱ ↔ 0, hence:

F1 ′ ≃g0ϱ◁
→

d
2&

(
d

2

)
w d

2
w 3d

2

1

|x|d→2⇀
= ≃g0ϱ◁

d
2
&
(
≃

d
4

)
&
(
d
2

)

&
(
3d
4

) 1

|x|d→2⇀

=
R1g0
|x|d→2⇀

(D.8)

where R1 = O (ϱ) as announced in the main text. It’s worth noticing that this contribution to the correlator

is conformal when ϱ ↔ 0. Indeed, it goes like |x|→d = |x|
→!ϑ→!(0)

ϑ3 where $↽ = d/4 and $(0)
↽3 = 3d/4 (no

anomalous dimension yet), and since this is e#ectively the correlator of two operators with distinct scaling
dimensions, it vanishes since R1 = O(ϱ), in accordance with the behavior of two-point functions in CFT.

Second diagram The second diagram is the first non-trivial contribution in the ϱ expansion. To calculate
it, we go to second order in the bare coupling g0. First of all, let’s calculate the combinatorial factor. At

each vertex, we choose which fields ω are linked together and then permutate the links. There are
(4
2

)2
ways

of picking the four fields involved in the first loop on the left, and 2! ways to permutate the links. For the
second loop, there are

(2
2

)
↑
(3
2

)
ways of picking the fields (only two remaining from the central ω4 vertex, and

three to choose from the composite operator) and again 2! permutations. Lastly, there are 2 fields remaining
from the leftmost internal vertex, which can be connected in 2! ways to the outer vertices. This yields the
following factor in front of the integral over internal vertex positions:

g20
4!2

↑

(
4

2

)2

↑ 2!↑

(
2

2

)
↑

(
3

2

)
↑ 2!↑ 2! =

3

2
g20 (D.9)

Therefore, the full expression of the diagram is given by

F2 :=
3g20
2

ˆ
ddy1ddy2

|x≃ y1|2!ϑ |y1 ≃ y2|4!ϑ |y1|2!ϑ |y2|4!ϑ
(D.10)

Again, this can easily be evaluated using the integrals derived in this section of the appendix. Evaluating
the y2 integral, followed by the y1 integral yields in the ϱ-expansion:

F2 =
3g20
2

w2
d→⇀w d↑ϖ

2
w 3d↑5ϖ

2

wd→2⇀wd→3⇀

1

|x|d→3⇀
(D.11)

When ϱ ↔ 0, the wd+k⇀ have simple poles in ϱ. However, these cancel since they have equal contributions
from the numerator and the denominator. The other factors have well-defined limits, and performing the
computation yields:

F2 ′ 9◁dg20
&
(
≃

d
4

)

&
(
3d
4

) 1

|x|d→3⇀
=

R2g20
|x|d→3⇀

(D.12)

with R2 = O(1).

E Useful Feynman diagrams
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Figure 4: Feynman diagrams involved in the computation of the two-point function up to second order in
perturbation theory for a ω4 interaction. The disconnected diagrams cancel after dividing by the partition
function. Taken from [10].

Figure 5: Feynman diagrams involved in the computation of the four-point function up to first order in
perturbation theory for a ω4 interaction. Taken from [10].
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